152 research outputs found

    First-principle density-functional calculation of the Raman spectra of BEDT-TTF

    Get PDF
    We present a first-principles density-functional calculation for the Raman spectra of a neutral BEDT-TTF molecule. Our results are in excellent agreement with experimental results. We show that a planar structure is not a stable state of a neutral BEDT-TTF molecule. We consider three possible conformations and discuss their relation to disorder in these systems.Comment: 3 pages, 2 figures, submitted to the proceedings of ISCOM 200

    Comparison of the phase diagram of the half-filled layered organic superconductors with the phase diagram of the RVB theory of the Hubbard-Heisenberg model

    Get PDF
    We present an resonating valence bond (RVB) theory of superconductivity for the Hubbard--Heisenberg model on an anisotropic triangular lattice. We show that these calculations are consistent with the observed phase diagram of the half-filled layered organic superconductors, such as the beta, beta', kappa and lambda phases of (BEDT-TTF)_2X [bis(ethylenedithio)tetrathiafulvalene] and (BETS)_2X [bis(ethylenedithio)tetraselenafulvalene]. We find a first order transition from a Mott insulator to a d_{x^2-y^2} superconductor with a small superfluid stiffness and a pseudogap with d_{x^2-y^2} symmetry. The Mott--Hubbard transition can be driven either by increasing the on-site Coulomb repulsion, U, or by changing the anisotropy of the two hopping integrals, t'/t. Our results suggest that the ratio t'/t plays an important role in determining the phase diagram of the organic superconductors.Comment: 4 pages, 3 figur

    Antiferromagnetic Spin Fluctuations in the Metallic Phase of Quasi-Two-Dimensional Organic Superconductors

    Get PDF
    We give a quantitative analysis of the previously published nuclear magnetic resonance (NMR) experiments in the k-(ET)2X family of organic charge transfer salts by using the phenomenological spin fluctuation model of Moriya, and Millis, Monien and Pines (M-MMP). For temperatures above T_nmr ~ 50 K, the model gives a good quantitative description of the data in the metallic phases of several k-(ET)2X materials. These materials display antiferromagnetic correlation lengths which increase with decreasing temperature and grow to several lattice constants by T_nmr. It is shown that the fact that the dimensionless Korringa ratio is much larger than unity is inconsistent with a broad class of theoretical models (such as dynamical mean-field theory) which neglects spatial correlations and/or vertex corrections. For materials close to the Mott insulating phase the nuclear spin relaxation rate, the Knight shift and the Korringa ratio all decrease significantly with decreasing temperature below T_nmr. This cannot be described by the M-MMP model and the most natural explanation is that a pseudogap, similar to that observed in the underdoped cuprate superconductors, opens up in the density of states below T_nmr. Such a pseudogap has recently been predicted to occur in the dimerised organic charge transfer salts materials by the resonating valence bond (RVB) theory. We propose specific new experiments on organic superconductors to elucidate these issues. For example, measurements to see if high magnetic fields or high pressures can be used to close the pseudogap would be extremely valuable.Comment: 11 pages, 2 figures. Accepted for publication in Phys. Rev.

    Ferromagnetism, paramagnetism and a Curie-Weiss metal in an electron doped Hubbard model on a triangular lattice

    Get PDF
    Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative inter-site hopping amplitudes (t<0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t>0 a large enhancement of the effective mass, ferromagnetism and a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e. ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. We propose that `Curie-Weiss metal' phase observed in NaxCoO2 is a consequence of the crossover from ``bad metal'' with incoherent quasiparticles at temperatures T>T* and Fermi liquid behavior with enhanced parameters below T*, where T* is a low energy coherence scale induced by strong local Coulomb electron correlations. We propose a model which contains the charge ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.Comment: 24 pages, 15 figures; accepted for publication in Phys. Rev.

    Transition dipole strength of eumelanin

    Get PDF
    We report the transition dipole strength of eumelanin (the principal human photoprotective pigment) in the ultraviolet and visible. We have used both theoretical (density functional) and experimental methods to show that eumelanin is not an unusually strong absorber amongst organic chromophores. This is somewhat surprising given its role as a photoprotectant, and suggests that the dark coloring in vivo (and in vitro) of the eumelanin pigment is a concentration effect. Furthermore, by observing the polymerization of a principle precursor (5,6-dihydroxyindole-2-carboxylic acid) into the full pigment, we observe that eumelanin exhibits a small amount (similar to 20%) of hyperchromism (i.e., the reaction process enhances the light absorption ability of the resultant macromolecule relative to its monomeric precursor). These results have significant implications for our understanding of the photophysics of these important functional biomolecules. In particular, they appear to be consistent with the recently proposed chemical disorder secondary structure model of eumelanins

    Vertex Corrections and the Korringa Ratio in Strongly Correlated Electron Materials

    Full text link
    We show that the Korringa ratio, associated with nuclear magnetic resonance in metals, is unity if vertex corrections for the dynamic spin susceptibility are negligible and the hyperfine coupling is momentum independent. In the absence of vertex corrections we also find a Korringa behaviour for T1T_1, the nuclear spin relaxation rate, i.e., 1/T1T1/T_1\propto T, and a temperature independent Knight shift. These results are independent of the form and magnitude of the self-energy (so far as is consistent with neglecting vertex corrections) and of the dimensionality of the system.Comment: 5 pages. accepted for publication in J. Phys.: Condens. Matte

    Strong electronic correlations in superconducting organic charge transfer salts

    Full text link
    We review the role of strong electronic correlations in quasi--two-dimensional organic charge transfer salts such as (BEDT-TTF)2X_2X, (BETS)2Y_2Y and β\beta'-[Pd(dmit)2_2]2Z_2Z. We begin by defining minimal models for these materials. It is necessary to identify two classes of material: the first class is strongly dimerised and is described by a half-filled Hubbard model; the second class is not strongly dimerised and is described by a quarter filled extended Hubbard model. We argue that these models capture the essential physics of these materials. We explore the phase diagram of the half-filled quasi--two-dimensional organic charge transfer salts, focusing on the metallic and superconducting phases. We review work showing that the metallic phase, which has both Fermi liquid and `bad metal' regimes, is described both quantitatively and qualitatively by dynamical mean field theory (DMFT). The phenomenology of the superconducting state is still a matter of contention. We critically review the experimental situation, focusing on the key experimental results that may distinguish between rival theories of superconductivity, particularly probes of the pairing symmetry and measurements of the superfluid stiffness. We then discuss some strongly correlated theories of superconductivity, in particular, the resonating valence bond (RVB) theory of superconductivity. We conclude by discussing some of the major challenges currently facing the field.Comment: A review: 52 pages; 10 fig

    On the Relationship Between the Critical Temperature and the London Penetration Depth in Layered Organic Superconductors

    Full text link
    We present an analysis of previously published measurements of the London penetration depth of layered organic superconductors. The predictions of the BCS theory of superconductivity are shown to disagree with the measured zero temperature, in plane, London penetration depth by up to two orders of magnitude. We find that fluctuations in the phase of the superconducting order parameter do not determine the superconducting critical temperature as the critical temperature predicted for a Kosterlitz--Thouless transition is more than an order of magnitude greater than is found experimentally for some materials. This places constraints on theories of superconductivity in these materials.Comment: 5 pages, 1 figur

    Substitution Effect by Deuterated Donors on Superconductivity in κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Full text link
    We investigate the superconductivity in the deuterated BEDT-TTF molecular substitution system κ\kappa-[(h8-BEDT-TTF)1x_{1-x}(d8-BEDT-TTF)x_x]2_2Cu[N(CN)2_2]Br, where h8 and d8 denote fully hydrogenated and deuterated molecules, respectively. Systematic and wide range (xx = 0 -- 1) substitution can control chemical pressure finely near the Mott boundary, which results in the modification of the superconductivity. After cooling slowly, the increase of TcT_{\textrm{c}} observed up to xx \sim 0.1 is evidently caused by the chemical pressure effect. Neither reduction of TcT_{\textrm{c}} nor suppression of superconducting volume fraction is found below xx \sim 0.5. This demonstrates that the effect of disorder by substitution is negligible in the present system. With further increase of xx, both TcT_{\textrm{c}} and superconducting volume fraction start to decrease toward the values in xx = 1.Comment: J. Phys. Soc. Jp

    A first-principles density-functional calculation of the electronic and vibrational structure of the key melanin monomers

    Get PDF
    We report first-principles density-functional calculations for hydroquinone (HQ), indolequinone (IQ), and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of biomacromolecules with important biological functions (including photoprotection) and with the potential for certain bioengineering applications. We have used the difference of self-consistent fields method to study the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, HL. We show that HL is similar in IQ and SQ, but approximately twice as large in HQ. This may have important implications for our understanding of the observed broadband optical absorption of the eumelanins. The possibility of using this difference in HL to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules have significantly different infrared and Raman signatures, and so these spectra could be used in situ to nondestructively identify the monomeric content of macromolecules. It is hoped that this may be a helpful analytical tool in determining the structure of eumelanin macromolecules and hence in helping to determine the structure-property-function relationships that control the behavior of the eumelanins
    corecore